Case Study:
Impact
of new housing projects in New York State Municipalities.
VARIABLES:
State Code
County Code
Expenditure per person
Wealth per person
Population
Percent intergovernmental
Density
Mean Income per person
id # (for matching)
Growth rate
Dataset
: NYM http://www.rci.rutgers.edu/~cabrera/586/nym VARIABLE NAMES:
"ST"
"CO" "EXPEN" "WEALTH" "POP"
"PINTERG" "DENS"
"INCOME"
"ID" "GROWR"
NY
Municipalities data
TOWNS OF INTEREST:
ST CO EXPEN WEALTH POP PINTERG DENS INCOME ID GROWR
WARWICK
36 33 237 78908 16225 24.7 170 19044 8730
30.3
MONROE
36 33 159 55067 9338 8.8 599
16726 5420 30.0
TUXEDO
36 33 926 155034 2328 6.1 52
30610 8400 2.5
QUESTION :
PREDICT EXPENDITURE FOR YEARS 2005 and 2025
Year POP WEALTH PINTERG DENS
INCOME
2000 16225 78908 24.7 170 19044
2025 31033 89000 26.0 325 20000
2000 7750 55067 8.8 599 16726
2025 12413 60000 10.1 959 18000
2000 2317 155034 6.1 52 30610
2025 29246 115000 7.0 656 25000
GRAPH OF EXPENDITURES
VS POPULATION IN THE LOG SCALE
plot(log(EXPEN)~log(POP),data=nym,axes=F,xlab="POP",ylab="EXPEN")
axis(1,
log(c(1000,10000,30000,100000)),c("1K","10K","30K","100K"))
axis(2,log(c(100,300,1000)),c(100,300,1000))
box()
lines(smooth.spline(log(nym$POP),log(nym$EXPEN)),col=2,lwd=3)
